skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bicer, Tekin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Long-running scientific workflows, such as tomographic data analysis pipelines, are prone to a variety of failures, including hardware and network disruptions, as well as software errors. These failures can substantially degrade performance and increase turnaround times, particularly in large-scale, geographically distributed, and time-sensitive environments like synchrotron radiation facilities. In this work, we propose and evaluate resilience strategies aimed at mitigating the impact of failures in tomographic reconstruction workflows. Specifically, we introduce an asynchronous, non-blocking checkpointing mechanism and a dynamic load redistribution technique with lazy recovery, designed to enhance workflow reliability and minimize failure-induced overheads. These approaches facilitate progress preservation, balanced load distribution, and efficient recovery in error-prone environments. To evaluate their effectiveness, we implement a 3D tomographic reconstruction pipeline and deploy it across Argonne's leadership computing infrastructure and synchrotron facilities. Our results demonstrate that the proposed resilience techniques significantly reduce failure impact—by up to 500× —while maintaining negligible overhead (<3%). 
    more » « less
    Free, publicly-accessible full text available June 6, 2026
  2. Many popular vetting tools for Android applications use static code analysis techniques. In particular, Inter-procedural Data-Flow Graph (IDFG) construction is the computation at the core of Android static data-flow analysis and consumes most of the analysis time. Many analysis tools use a worklist algorithm, an iterative fixed-point approach, to construct the IDFG. In this paper, we observe that a straightforward GPU parallelization of the worklist algorithm leads to significant underutilization of the GPU resources. We identify four performance bottlenecks, namely, frequent dynamic memory allocations, high branch divergence, workload imbalance, and irregular memory access patterns. Accordingly, we propose GDroid, a GPU-based worklist algorithm implementation with multiple fine-grained optimizations tailored to common characteristics of Android applications. The optimizations considered are: matrix-based data structure, memory access-based node grouping, and worklist merging. Our experimental evaluation, performed on 1000 Android applications, shows that the proposed optimizations are beneficial to performance, and GDroid can achieve up to 128X speedups against a plain GPU implementation. 
    more » « less